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Antibiotics are our primary approach to treating complex infections, yet we have a poor understanding of how these drugs affect
microbial communities. To better understand antimicrobial effects on host-associated microbial communities we treated cultured
sputum microbiomes from people with cystic fibrosis (pwCF, n= 24) with 11 different antibiotics, supported by theoretical and
mathematical modeling-based predictions in a mucus-plugged bronchiole microcosm. Treatment outcomes we identified in vitro
that were predicted in silico were: 1) community death, 2) community resistance, 3) pathogen killing, and 4) fermenter killing.
However, two outcomes that were not predicted when antibiotics were applied were 5) community profile shifts with little change
in total bacterial load (TBL), and 6) increases in TBL. The latter outcome was observed in 17.8% of samples with a TBL increase of
greater than 20% and 6.8% of samples with an increase greater than 40%, demonstrating significant increases in community
carrying capacity in the presence of an antibiotic. An iteration of the mathematical model showed that TBL increase was due to
antibiotic-mediated release of pH-dependent inhibition of pathogens by anaerobe fermentation. These dynamics were verified
in vitro when killing of fermenters resulted in a higher community carrying capacity compared to a no antibiotic control.
Metagenomic sequencing of sputum samples during antibiotic therapy revealed similar dynamics in clinical samples. This study
shows that the complex microbial ecology dictates the outcomes of antibiotic therapy against a polymicrobial infection.
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INTRODUCTION
Antibiotics are our principal weapon against bacterial infection
and one of the most widely prescribed medications worldwide.
Global antibiotic consumption increased 39% from 2000 to 2015
and daily prescribed doses have increased by 65% [1]. Despite the
broad use of these drugs, we still have a poor understanding of
how they affect complex communities of microorganisms, as they
are generally developed and tested against single pathogens in
isolation. This is especially true in the case of the chronic lung
disease cystic fibrosis (CF), where a polymicrobial infection
develops early in life and evolves within the patient’s lung over
decades [2]. Opportunistic pathogens, such as Pseudomonas
aeruginosa and Staphylococcus aureus, tend to dominate these
infections, but there is a more diverse microbial community
contributing to lung disease in CF than originally appreciated
[3, 4]. This complex community of microbes, termed the CF lung
microbiome, includes not only opportunistic pathogens, the
primary targets of antimicrobial therapy, but also other micro-
organisms originating from the upper airway, including anaerobic
fermenters [5, 6]. Despite this complexity, antibiotic therapy
against CF lung infections is frequently predicated on antimicro-
bial resistance profiles of isolates of classic pathogens from

sputum samples. These bacteria are grown in pure culture, tested
against a panel of antibiotics, and recommendations for treatment
are suggested based on these in vitro antimicrobial susceptibility
outcomes. It comes as no surprise, given the diversity of the CF
lung microbiome now known [7, 8], that these susceptibility
profiles are often unable to predict therapeutic outcomes [9, 10].
CF lung mucus is a complex microbial ecosystem, and we have a
poor understanding of how antimicrobial therapies affect the
collective community.
Understanding complex communities of organisms requires a

comprehensive approach including in vivo and in vitro experi-
ments supported by effective models. Experimental validation of
these mathematical models are vital to their utility [11]. This
approach has been successfully used in macroorganism ecology
[12], where mathematical models of predator-prey relationships
and community response to species extinctions have been used
to help predict outcomes of these ecological disturbances [13]. In
microbiology, however, these models are generally limited to
single species populations and are difficult to apply to more
complex systems [11, 14, 15]. Microbial communities represent
most microbial lifestyles in the human body, making the need to
better understand their structure and function dynamics of high
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importance. Recent efforts to model microbial systems have
utilized flux-balance analysis based on bacterial metabolic net-
works and annotated genome reconstruction, also known as
genome-scale metabolic models (GEMs) for the gut microbiota
[16]. Stoichiometric models that predict the metabolism of specific
nutrients from genomic information can demonstrate relevant
cross-feeding and mutualistic interactions that can be validated
in vitro [17]. Recent studies in CF have shown cross-feeding
between communities of anaerobes and Pseudomonas aeruginosa,
which is an important finding for translating metabolic models to
clinical relevance [18]. Models that can predict experimental
outcomes of perturbations in complex microbial communities are
rarer and more challenging to develop, due to the difficulty in
controlling community variability, in applying appropriate micro-
cosms of the natural environment, and the generally poor
understanding of how individual members interact in complex
assemblages [19].
Our group recently developed a biofilm-based mathematical

model that could predict CF lung microbial community shifts
based on oxygen and pH gradients, setting a platform for
experimental validation of the drivers of microbial dynamics in CF
airways [20]. Here, we utilized this model of a simplified CF lung
microbiome to predict outcomes of broad-spectrum and targeted
antimicrobial therapy. We then explored in vitro results of
paralleled experiments by exposing natural CF lung microbiomes
to a panel of 11 different antibiotics in a culture microcosm called
the WinCF system [21, 22]. Multi-omics experimental data was
used to characterize outcomes of antibiotic therapy in the
experiment and compared to model predictions. While some
observed outcomes were expected, others were not, leading to
further iterations of the model to better explain the complex
effects of antibiotics on a polymicrobial community.

MATERIALS AND METHODS
Sample information and collection
Twenty-four sputum samples were collected from 24 CF volunteers in
compliance with Spectrum Health (IRB project #2018-438), UC San Diego
(IRB project #081500 and #160078), and the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) requirements. All samples were
expectorated directly into a sterile sputum cup or 50mL Falcon tube,
immediately stored on ice, and shipped overnight on ice to the laboratory
for antibiotic culture experiments and multi-omics analysis.

WinCF culturing and inoculation
Artificial sputum medium (ASM) was prepared as described elsewhere
[21, 22]. The pH was adjusted to 7.0 and 500 µL of ASMmedia was aliquoted
into twelve 1.5mL Eppendorf tubes per sputum sample (total n= 288). Each
tube contained one of 11 different antibiotics mixed into the media prior to
inoculation at the concentrations listed in Table S1 with one sample left as a
control with no drug and an unioculated media control. Then 50 µL of
diluted sputum from one of 24 subjects (5:1 in PBS) was used to inoculate
each of the tubes and vortexed for 5 s. Triplicate glass capillary tubes were
placed inside and allowed to fill with ASM via capillary action according to
the method described by Comstock and colleagues [22]. These tubes were
sealed at one end with Hemato-Seal capillary tube sealant (Fisher
Biosciences) and placed into 15mL tubes, plugged with a wet paper towel,
and incubated at 37 °C horizontally over the course of 48 h. The remaining
inoculated ASM was transferred to sterile 96-well deep-well plates (Thermo
Scientific), covered, and incubated at 37 °C for 48 h.

DNA isolation and 16S rRNA gene amplicon sequencing
DNA was extracted from 100 μL aliquots of media using a DNeasy
PowerSoil HTP 96 kit (Qiagen) in 96-well plate format following the
manufacturer’s protocol. An initial test PCR amplification was done on the
V4 region with primers 27 F and 1492 R of the bacterial 16S rRNA gene to
determine the efficacy of the DNA extraction. All PCR amplifications were
performed in a thermocycler with the following program: 95 °C for 5 min
for denaturation followed by 30 annealing cycles, 95 °C for 1 min, 48 °C for
30 s, 72 °C for 2 min, and finally, 72 °C for 10min. PCR products were

checked for amplification using agarose gel electrophoresis. For subse-
quent microbiome sequencing, the V4 hypervariable region of the 16S
rRNA gene was amplified using Illumina compatible, dual indexed primers
515 f/806r [23]. PCR products were batch normalized using a SequalPrep
DNA Normalization plate (Invitrogen) and product recovered from the
plates was pooled. The pool was concentrated with an Amicon
concentrator column (Millipore) and cleaned up using a 0.8x volume of
AmpureXP magnetic beads (Beckman Coulter). The pool underwent quality
control which included Qubit dsDNA HS, Agilent 4200 TapeStation HS
DNA1000 and KAPA Library Quantification qPCR assays (Illumina). This pool
was loaded onto one (1) MiSeq v2 Standard flow cell and sequencing was
carried out in a 2 x 250 bp paired end format using a MiSeq v2 500 cycle
reagent cartridge. Custom sequencing and index primers complementary
to the 515 f/806r oligomers were added to appropriate wells of the reagent
cartridge. Base calling was done by Real-Time Analysis (RTA, Illumina)
v1.18.54. The output of RTA was demultiplexed and converted to FastQ
format with Bcl2fastq v2.20.0 (Illumina).

qPCR methods
Extracted DNA was amplified using the following primers 16S rRNA gene
universal primers: 5′-TAC TAC GGG AGG CAG CAG-3′ (Forward) and 5′-GGA
CTA CCA GGG TAT CTA ATC CTG TT-3′(Reverse) [24]. The reaction was
performed in 12.5 µL using SYBR Green PCR master mix (Applied
Biosystems). The cycle was run on a QuantStudio 7 in triplicate under
the following conditions: 50 °C for 2 min, 95 °C for 2 mins for denaturation
followed by 40 cycles, 95 °C for 15 s, 60 °C for 1 min. Standard curves of a
diluted culture of Pseudomonas aeruginosa DNA with a known CFU/mL
extracted with the same procedure were used to determine an estimate of
the total rRNA gene copies per mL of media after adjusting for the four
rRNA gene copies in the P. aeruginosa genome.

Microbiome data processing
Raw sequences were processed using Qiita [25] and were quality filtered to
generate amplified sequence variants using Deblur [26]. Sequences were
aligned in QIIME2 version 1.9.1 [27] using MAFFT [28] to construct a
phylogenetic tree using FastTree2 [29]. Taxonomy was assigned using the
q2-feature-classifier against the 99% Greengenes 16S rRNA gene reference
database (version 13-8) [30]. If the Greengenes database is updated this
may result in identification of further diversity [30, 31]. QIIME2 version
2019.4.0 was used to calculate core diversity metrics, i.e. Shannon indices
and weighted UniFrac distance matrices measures [27]. Amplicon
sequence variants (ASVs) were classified as either pathogens or fermenters
(anaerobes) based on their known clinical relevance in clinical micro-
biology labs and CF literature [4, 32] (Table S1 and S2).

Metabolomics
Organic extraction was performed by adding twice the sample volume
(400 μl) of chilled 100% methanol, vortexing briefly, and incubating at
room temperature for 2 h. Samples were then centrifuged at 10,000 x g for
10min and the supernatant was collected [33] Methanolic extracts were
analyzed on a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer
coupled to a Vanquish ultra-high-performance liquid chromatography
system (Thermo) in positive ion mode. Briefly, sputum metabolites were
separated on a Aquity C18-Reverse phase column (Waters) with a 12min
chromatography run using an acetonitrile and water gradient (98:2 to
2:98). The injection volume was 10 µL, the flow rate was 0.40mLmin−1,
and the column temperature 60 °C. Full MS1 survey scans and MS2 mass
spectra for five precursor ions per survey scan were collected using
electrospray ionization with a scan range set from m/z 100 to 1500 for the
full MS mode (minutes 1–10 of run) [4, 33]. All raw files were converted to.
mzXML format and then processed with MZmine 2.53 software [34], GNPS
molecular networking [35], and SIRIUS [36].

Modelling methodology
A mathematical model, initially developed elsewhere [20], was employed,
consisting of two microbial entities, one denoted as the pathogen
(representing primarily, but not exclusively, Pseudomonas aeruginosa) and
the other as a representative anaerobic fermenter, cohabiting a columnar
domain of height 0.8 cm, together with a number of chemical species
(oxygen, nitrogen, sugar, amino acids, ammonium, acid, inhibitor, and
antibiotics) which diffuse through the domain and may be consumed or
produced locally by the microbes, and which may locally influence
microbial growth and death rates. The model consists of ten reaction-
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diffusion partial differential equations (for diffusible chemical species)
coupled with two spatially dependent ordinary differential equations (for
microbial entities), and equations are solved numerically (see supple-
mental Material for details). Parameters of the model are based on
previous experiments with these two communities in WinCF and knowl-
edge from the literature (Table S2) [20]. The model dictates that fermenters
consume sugar and produce acid, while the pathogen consumes oxygen,
nitrate, and amino acids. The pathogen produces ammonium from
deamination and a fermenter inhibitor, meant to represent its antibiotic
production from compounds such as phenazines and rhamnolipids
[21, 37]. Fermenter growth rate decreases with increasing oxygen
concentration, and the fermenter carrying capacity decreases with
increasing concentration of inhibitor. The carrying capacity of sputum for
the pathogen is an increasing function of pH (or equivalently a decreasing
function of the acid), which is based on our initial study that showed the
bacterium is easily outcompeted at lower pH [20]. Three different antibiotic
types are deployed: one which only kills fermenters (denoted Tf), one
which only kills P. aeruginosa (denoted Tp), and one which kills both
(denoted Tw). We suppose that a fixed amount of antibiotics are added at
time t= 0 with uniform concentration in the reactors, then consumed
while killing bacteria, and that the diffusion coefficients, killing rates, and
consumption rates are the same for all antibiotics.

Metagenomic sequencing of patient sputum samples
DNA from sputum samples was isolated using the Dneasy PowerSoil Pro
Kit (Qiagen), according to the manufacturer’s protocol. Isolated DNA was
quantified by Qubit. Metagenomics was performed by CosmosID Inc.
(Rockville, MD) according to their standard protocols. DNA libraries were
prepared using the Nextera XT library preparation kit (Illumina), with a
modified protocol. Library quantity was assessed with Qubit (Thermo-
Fisher). Libraries were then sequenced on an HiSeq platform 2x150bp
(Illumina). Unassembled sequencing reads were directly analyzed by
CosmosID metagenomic software (CosmosID Inc., Rockville, MD) via high-
performance data-mining k-mer algorithm and highly curated dynamic
comparator databases that disambiguate short reads. Taxonomy was
assigned via the CosmosID database. Diversity measures (Shannon index)
were calculated via the CosmosID metagenomic software. Identified
sequences were classified as either pathogens or fermenters based on
their clinical relevance (Table S2).

Follow-up validation experiments with representative Tf, Tp,
and Tw antibiotics
ASM was supplemented with 0.04mg/L of phenol red pH indicator and
subsequently adjusted to 7.4. Three antibiotics (meropenem trihydrate
(Tw), tobramycin (Tp), and metronidazole (Tf)) were chosen and added as
individual treatments at a concentration of 2.05mg L−1. These were then
incubated with communities obtained from sputum preserved in 50%
glycerol, one community was from a patient known to have a P. aeruginosa
infection and the other was not known to have P. aeruginosa according to
clinical records. This was verified by plating the sputum culture on
cetrimide agar for P. aeruginosa growth. Then, 400 µL of inoculated ASM
media was aliquoted into 1.5 mL Eppendorf tubes in replicates of 10 and
incubated for 48 h at 37 °C. DNA was extracted from 50 µL of the sample
via Quick-DNA Miniprep Plus kit (Zymo Research Corp) followed by qPCR
and 16S rRNA gene sequencing as described above. This experiment was
repeated with 5 replicates for validation. The pH estimation was obtained
by measuring the average RGB color values from the phenol red media dye
using Image J software and comparing it to ASM with phenol red standard
buffered from pH 5–8.

Statistical analysis
Alpha diversity for microbiome and metabolome were calculated with the
Shannon diversity index. Beta diversity for the microbiome was calculated
using the weighted UniFrac distance while Bray-Curtis was used for the
metabolome. Permutational Multivariate Analysis of Variance test (PERMA-
NOVA) individual and mixed effect model, examining interactions between
and nested effects, were calculated from the relative abundances via the
Bray-Curtis method with 999 permutations. Subsequent stepwise model
selection was used to determine which effects/mixed effects had the
greatest influence on ASV presence/absence. Kruskal-Wallis tests were
done to determine significance across various measures as the data was
not assumed to be normal. Post hoc Mann-Whitney tests with applied
Bonferronic correction (Tables S4–S13) were performed to examine

differences across the antibiotic treatments. Prevalence measures on ASVs
were also examined (Fig. S9). PERMANOVA and the standard homogeneity
condition was performed with the R vegan package (v.2.5–7) [38] via
adonis() and betadispr(). Kruskal-Wallis tests and post-hoc Mann-Whitney
tests were performed using the R dplyr package (v.1.0.2) [39]. Data
visualization was done using the R package ggplot2 (v.3.3.5) [40] and
phyloseq (v.1.30.0) [41]. A PCA was calculated via the R package stats
(v.3.6.2) and visualized via R package factoextra (v.1.0.7). Prevalence was
measured and visualized using the R package microbiome (v.1.17.41) [42].

RESULTS
Model overview and parameters
Our mathematical model of the CF lung microbiome dynamics,
originally developed in [20], is based on knowledge of the
physiology and interactions among community members from
experimental data and evidence in the literature. The model
setting is a mucus-plugged tube, open to the air at the top and
sealed at the bottom, mimicking a lung bronchiole. This setting is
meant to pair with a previously established experimental
microcosm called the WinCF system [21], which we use below
for experiments. There is an important spatial component to the
model, as oxygen penetration from the open top of the tube is
constant and shapes the community structure. The consequences
of these chemical gradients were first modelled in our initial study
[20]. The community members are classified as either “pathogens”,
representing classic CF pathogens, or “fermenters”, representing
other anaerobic organisms commonly encountered in CF airways.
These classifications are a significant simplification, but they can
be considered as guilds, in that their individual members have
similar inherent properties defined by their core metabolism,
antibiotic resistance, and niche occupancy [20]. The definition of
classic pathogens and anaerobic fermenters is also clinically
relevant, as the former are those assayed in clinical labs for
antibiotic resistance to inform treatment decisions, whereas
anaerobic fermenters are not cultured or tested for susceptibility
in most clinical labs. Classifications of each microbiome member
into these guilds are available in Tables S2–S4. Fermenters reside
in low oxygen areas and utilize sugars to produce acids [20]
(Fig. 1). Pathogens, principally, but not exclusively, Pseudomonas
aeruginosa, occupy high oxygen regions where they aerobically
respire and utilize amino acids as a carbon source producing
ammonium, which increases the surrounding pH [20] (Fig. 1).
Pathogens can also respire anaerobically, with nitrate as an
electron acceptor (Fig. 1). In addition to increasing the surround-
ing pH, they produce inhibitor molecules (such as phenazines and
quinolones) that inhibit the growth of fermenters [20] (Fig. 1). This
model is hereon referred to as the “mathematical model”.

Predicting and modelling outcomes of antibiotic therapy
To better conceputalize and compare our modeling and experi-
mental results, we first theoretically predicted the outcomes of
antimicrobial therapy against the two guilds using three
theoretical drugs: one with fermenter coverage (denoted Tf),
one with pathogen coverage (denoted Tp), and one with broad
spectrum coverage (denoted Tw). This approach is hereon referred
to as the “theoretical prediction”. To further enable comparison to
experimental data we outline characteristics of the two guilds we
expect to observe in the experiments. Firstly, the growth of
anaerobic fermenters is positively correlated with an increase in
gas production (bubble formation in the WinCF system) [21].
Second, an increase in P. aeruginosa positively correlates with an
increase in its inhibitor molecule (e.g., Quinolone HHQ) and P.
aeruginosa does not produce gas in the WinCF system [21].
Thirdly, based on Tables S1–S4 and the CF microbiome literature,
fermenters are more diverse than pathogens [2, 43, 44]. These
characteristics of our theoretical prediction enable direct compar-
ison to microbiome measures of experimental results, such as
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alpha diversity, beta diversity, pathogen relative abundance,
fermenter relative abundance and total bacterial load (TBL).
With our theoretical prediction we expect the following

outcomes when communities are exposed to antibiotics: (1)
community resistance, (2) community death, (3) pathogen death,
and (4) fermenter death (Fig. 2A–E). In both the complete absence
of an antibiotic and community resistance, we expect TBL,
pathogens, fermenters, HHQ, and gas production measures to
increase until reaching carrying capacity (Fig. 2B). The opposite,
community death (treatment with Tw) results in both microbial
entities failing to grow (Fig. 2C). Tw treatment would not change
alpha or beta diversity, as we would simply measure the initial
inoculum due to total community death. Outcomes 1 and 2 have a
degree of uncertainty due to the fact that it is difficult to assume
the community would not change from the inoculum without an
antibiotic present, but it is expected that Tw would have less
impact on microbiome diversity than Tp or Tf (Fig. 1C). Treatment
with Tp results in an anaerobic fermenter bloom, increasing alpha
and beta diversity along with gas production and a decrease in
HHQ production (Fig. 2D). Finally, in the case of Tf treatment,
fermenter abundance and gas production would decrease while
HHQ abundance would increase (Fig. 1E). Treatment with Tf will
also result in a decrease in alpha diversity and an increase in beta
diversity because of changes in community structure when the
diverse anaerobic fermenters are killed (Fig. 2E).
The theoretical prediction was then tested with themathematical

model hereon referred to as “model iteration 1”. Importantly, our
model parameters can use relative abundance data of the two
guilds as input. Therefore, we used the sputum microbiome data
of all 24 subjects as inputs for model interation 1 (Fig. 2F–H). The
outputs were in line with our theoretical prediction and showed
that the fermenter drug would reduce the fermenter load, with
little effect on the pathogens, the pathogen drug vice versa, and
the broad-spectrum antibiotic would kill both (Fig. 2F–H). How-
ever, model iteration 1 did produce some unexpected results. The
TBL of the Tw decreased to similar levels as Tf and Tp, indicating

similar levels of killing whether there was selection against a single
guild or the whole community (Fig. 2H). In addition, the TBL and
Pathogen/Fermenter log-ratio were variable, indicating the carry-
ing capacity and community dynamics were predicated upon
characteristics of this initial sputum inoculum (Fig. 2F–H). Our
theoretical prediction (Fig. 2A–E), in tandem with model iteration 1
(Fig. 2F–H), provided a platform for comparison to the in vitro
antibiotic experiments with the WinCF system described below.

Experimental results of antibiotic therapy against the lung
microbiome
We examined the effects of antibiotics (n= 11) on the CF sputum
microbiome cultured in a lung bronchiole microcosm (WinCF
system, n= 24) using a combination of 16S rRNA gene amplicon
sequencing, metabolomics, and qPCR analysis and compared to
our theoretical prediction and model iteration 1. This is hereon
referred to as the “antibiotic experiment”. The antibiotics were
chosen to represent the main chemical classes commonly used in
CF clinics and included: amoxicillin, azithromycin, aztreonam,
ciprofloxacin, colistin, doxycycline, levofloxacin, meropenem,
metronidazole, bactrim (a combination of sulfamethoxazole/
trimethoprim), and tobramycin. Each of the 24 sputum samples
were used as an incoculum in ASM treated with one of 11 different
antibiotics cultured at 37 °C for 48 h (Table S1) and compared to a
no-treatment control. WinCF tubes were also inoculated with this
media/sputum/antibiotic mixture to quantify gas bubble produc-
tion from fermentation (as described in [21]). The antibiotic
concentration for each drug was variable and chosen to match the
measured concentrations in the blood or sputum of pwCF
in pharmacokinetic studies (Table S1). The most prominent
genera across all samples after growth were Pseudomonas,
Streptococcus, Veillonella, Haemophilus, Fusobacterium, Prevotella,
Staphylococcus, Achromobacter, and Neisseria (Fig. S2). A principal
component analysis (PCA) biplot, examining the top five factors
by percent contribution, showed the primary genera driving
community differentiation were Pseudomonas, Streptococcus, and

Fig. 1 Schematic of principles and interacations defining the mathematical model. All consitunents of the model are represented in
illustrating basic assumptions and interactions. Fermenters (θf) metabolize (SG) as a carbon source, which produce acid (F) leading to an
increase in hydrons (H+) (i.e. lowering the pH) under anaerobic conditions. This pH decrease inhibitis the growth of pathogens. Pathogens (θP)
in the presence of oxygen (SO) (i.e., aerobic conditions) use amino acids (SA) as their primary carbon source. The byproduct of this metabolism
is ammonium (P), which produces hydroxide (OH-) leading to an increase in pH, inhibiting fermenter growth. Under anaerobic conditions
pathogens use nitrate (SN) as an electron acceptor. In addition to this pathogens produce a chemical inhibitor of fermenters (I).
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Staphylococcus (Fig. S3). The effects of antibiotics and individual
patients on the composition of the communities were compared
via PERMANOVA (Table S7). Tested separately, both antibiotic and
subject source had a highly significant effect on the community
structure (p < 0.001). However, the nested effect and interactions
between antibiotic and the patient did not (p= 1). Thus, the
changes in the ASV composition were the result of both the
antibiotic and the subject’s initial community separately, but there
were not universal responses across subjects for each drug.
We visualized the changes in our microbiome and physiology

measures compared to the no antibiotic control in the context of
the theoretical prediction (colored areas in Fig. 3) to aid the
identification of outcomes that did or did not match the
predictions. All measures had significantly different changes
across antibiotics according to a Kruskal-Wallis test, except for
HHQ abundance (Tables S8, S9). Alpha diversity (Shannon index)
showed a general decrease compared to an untreated control
when the antibiotic was applied (Fig. 3A), but this depended on
the antibiotic. amoxicillin and meropenem resulted in the
strongest decreases in alpha diversity, being significantly lower
than the other treatments (Table S10), which changed little and
had instances of increases in diversity (Fig. 3A and Table S10).
Beta diversity (weighted UniFrac distance) comparisons of
treatment samples to the no antibiotic control enabled quanti-
fication of the degree of microbiome change due to treatment.
amoxicillin and meropenem had the highest beta diversity
increases, with the latter being significantly higher than 8
others (Table S11) and azithromycin the lowest (Tables S9, S11),
though there was significant variability within each drug limiting
the statistical significance across the different treatments.
The variability in the antibiotic experiment showed that although
some drugs had smaller impacts than others all antibiotics
impacted the microbiome composition with some unique
responses for particular patients (Figs. 3B and S4). Plotting
Pathogen/Fermenter log-ratio changes compared to the control
enabled the quantification of dynamics between the two guilds
and direct comparisons to the theoretical prediction and model

iteration 1. Again, amoxicillin (significantly higher than 7 of 10)
and meropenem (higher than 8 of 10) increased the relative
abundance of pathogens compared to fermenters. Significant
decreases in this ratio were observed with aztreonam, tobramy-
cin, and ciprofloxacin (Fig. 3C and Tables S8 and S12). An
unexpected result not identified by theoretical predictions or
model iteration 1 was observed when comparing TBL changes
between treatment samples and controls. Overall, the rRNA gene
copy number (a measure of total bacterial abundance using
qPCR) did not change significantly across the different antibiotics,
except for meropenem, which significantly reduced this ratio
compared to 8 of 10 treatments (Fig. 3D, Tables S8 and S13).
Interestingly, despite the decrease in alpha diversity and increase
in beta diversity compared to the control, amoxicillin did not have
a significant decrease in TBL. Furthermore, all drugs had samples
that increased in total bacterial abundance (i.e. values above 1 in
Fig. 3D). Specifically, 17.8% of all samples showed a 20% increase
in rRNA gene copies and 6.8% increased by 40% (Fig. 3D and
Tables S17, S18). Therefore, despite the presence of an antibiotic
meant to inhibit bacterial growth, the total carrying capacity
increased in many samples of the antibiotic experiment, but this
phenomenon was not driven by a specific drug. HHQ abundance
changed dynamically with antibiotic treatment (greater than 2-
logs) and these changes were mostly driven by the individual
subject source not a specific antibiotic (Tables S14, S15 and
Figs. S4a, S4e), meaning that there was a more personalized
response to the production of this P. aeruginosa associated-
metabolite. Finally, gas production, our measure of microbial
fermentation in the WinCF system, showed an overall decreasing
trend compared to the control, most pronounced from merope-
nem, doxycycline and amoxicillin, but few comparisons were
significant due to extensive variation within each treatment
(Fig. S3a and Table S16). Similarly to the increases in TBL, but this
time predicted by the model, increases in the gas production
were seen in the experiment and all antibiotics had at least one
instance of an increase compared to the no-treatment control
(Fig. S4a and Table S16).

Fig. 2 Theoretical predictions and Model iteration 1. The initial microbiome is composed of both pathogens and fermenters and is
illustrated in (A), but the proportions of these are unique to each patient. Under pressure of the various treatments (B) NT, (C) Tw, (D) Tp, and
(E) Tf the predicted community response is illustrated. The response i.e., (expected change) in common microbiome measures as indicated in
the legend (yellow= increase, red= decrease). The measures are the following: Alpha diversity (AD), Beta diversity (BD), gas production (GP),
total bacterial load (TBL), pathogen abundance (P), fermenter abundance (F), and 2-heptyl-4quinolone abundance (HHQ). The model output
treatment-to-NT log-ratio of (F) fermenter population and (G) pathogen population of patient 12 as an example with spatial variation at t= 50
h. Boxplots showing model outcomes of the (H) 16S rRNA gene copy ratio and (I) Pathogen to Fermenter log-ratio compared to the control.
Each patients’ actual sputum Pathogen/Fermenter ratio was used as input to the model (n= 24). The dotted grey line denotes no change from
treatment.
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Characterizing outcomes of antibiotic therapy against the CF
lung microbiome
To better quantify and characterize outcomes from the antibiotic
experiment, microbiome measures of interest were plotted against
the UniFrac distance from the control sample (Fig. 4). Four
outcomes observed from this experiment matched the theoretical
predictions and model iteration 1 including: 1) community
resistance, 2) community death, 3) pathogen death, and 4)
anaerobe death (outcome definitions quantified in Table S17).
Outcomes five and six were not predicted and were defined as 5)
niche replacement events and the 6) release of community level
inhibition. The most common outcome was 1) community
resistance, which encompassed 44.6% of all samples tested (Fig. 4,
quantified outcome definitions available in Tables S17, S18). This
may indicate that the CF lung microbiome has an inherent
antibiotic resistance due to decades of exposure and the
propensity of its constituents to grow as biofilms [45, 46].
Community death (outcome 2), occurred 17.8% of the time. Cases
of community death with little change in beta diversity were rare,
indicating that comprehensive antibiotic killing most often results
in a community structure change compared to a no antibiotic
control. Both pathogen death (8%) and fermenter death (17%)
outcomes were observed in our experiments (Fig. 4 and
Tables S17, S18). Anaerobe death outcome was driven by
meropenem and amoxicillin as shown in Fig. 3C, whereas,
pathogen death was not driven by any particular drug. Niche
replacement (outcome 5) occurred when the TBL of the sample
did not change but the UniFrac distance was above 0.4, which

encompassed 6.4% of samples (Fig. 4b, d). This outcome may
reflect the diverse nature of the fermenter guild; when a certain
species is killed, another can take its place, maintaining the
fermentative nature of the community but resulting in a
community structural change. The release of community level
inhibition (outcome 6) was defined as an increase in TBL (>40%),
which occurred in 6.8% of samples. The microbiomes of outcome
6 were predominantly dominated by pathogens compared to the
control samples (Fig. S7). We found this outcome to be especially
interesting, with potential clinical relevance; we therefore
performed follow up experiments to understand it further.
Other interesting data relationships were found in these

experiments (Fig. S8) though they were not defined as outcomes.
For example, the changing UniFrac distance and change in alpha
diversity were negatively correlated (Fig. S8a). A large increase in
UniFrac distance (over 40% increase), was generally associated
with takeover by a particular ASV, driving this phenomenon
(Figs. S7 and S9). According to prevalence measures of theses
samples the prominent genera in these instances were Pseudo-
monas and Streptococcus (Fig. S9). In the cases of meropenem and
amoxicillin, UniFrac distances were increased while the Shannon
indices were decreased, due to the killing of diverse anaerobic
community, but there were fewer cases of an increase in alpha
diversity and a significant microbiome change (observed in
3 samples only) indicating a kind of buffering of the microbiome
by the diverse anaerobic community (Fig. S7a). The increase in TBL
characterizing outcome 6 was rarely associated with an increase in
alpha diversity (Table S17). Finally, similar to a phenomenon
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described in CF sputum [31], when the microbiome alpha diversity
increases the metabolome diversity decreases, likely reflecting
consumption of different metabolites by a more diverse micro-
biome (Fig. S7c).

Model iteration 2 and experimental validation to explain
increase in TBL
Becausemodel iteration 1 did not predict the interesting outcome 6,
we altered its parameters to determine if we could observe an
increase in TBL in the presence of an antibiotic, hereon referred to as
“model iteration 2”. In model iteration 1, parameter λ in the function
g2(Z) was set to 0.1, which represents pH driven inhibition of
fermenters on pathogen growth. Due to the inverse relationship
of this parameter, reducing it to 0.05 increased the strength of
inhibition, resulting in an increase in TBL for some subjects, akin to
that observed in our experimental outcome 6 (Fig. 5A). This only
occurred in Tf treatments in model iteration 2, corresponding to a
bloom in pathogens after killing of anaerobes. Furthermore, this
phenomenon was only present in modelled samples that initially
contained much lower populations of the fermenter guild
compared to pathogens and is dependent on the spatial structure
driven by oxygen gradients that is an inherent property the
modeled system (Figs. 1 and 5A). This finding suggests that
outcome 6 in the antibiotic experiment may be driven by an
antibiotic mediated release of community level inhibition driven by
the effect of low pH from fermenters on pathogens and the
inhibition of anaerobes by oxygen [20]. Thus, we set out to explore
this phenomenon in more detail experimentally.

A simple in vitro experiment was performed where three
antibiotics, meropenem (Tw), tobramycin (Tp), and metronidazole
(Tf), were added at 2.048mg/L in ASM media inoculated with two
representative communities obtained from pwCF: P1 and P2 (n=
10 replicates) (Fig. 5B–F). The three drugs were selected based on
their common uses against CF infections based on pathogen and/
or anaerobic coverage, but we acknowledge that their effects are
not exclusive to these organisms. Community P1 did not contain
P. aeruginosa via culturing on cetrimide agar, whereas the
bacterium was isolated from the sputum of P2. This provided a
unique opportunity to test the predictions from model iteration 2
on the outcomes of a community with or without P. aeruginosa. A
lower concentration of antibiotics was chosen to avoid wide-
spread killing of the communities. We examined the following:
rRNA gene copies, approximate pH (based on RGB color values
inferred from phenol red buffered media standards) and 16S rRNA
gene amplicon sequencing (Fig. 5). This is hereon referred to as
the validation experiment. The validation experiment reproduced
outcome 6, where both the number of rRNA gene copies were
higher when the antibiotic was present than in the no treatment
control for both P1 and P2 (Fig. 5C). In contrast to model iteration
2, this only occurred in treatment Tw (paired t-test, p= 0.000831)
(Fig. 5). Accordingly, this increase in TBL corresponded to an
increase in pH of the cultures, validating the association of
the anaerobe induced fermentation with an inhibition of the
communities’ total carrying capacity (p= 1.69 × 10−9, Fig. 5B–E). In
fact, there was a strong positive correlation between the TBL and
media pH overall (Fig. 5B). Furthermore, P2 reached a higher
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bacterial load overall than P1 in the validation experiment,
indicating that the pathogen’s presence drove the community
to a higher carrying capacity (Fig. 5E). The lower growth in
community P1 shows that a community of primarily anaerobic
fermenters struggles without the aerobic pathogen present.
Microbiome profiles of these follow up experiments validated
the predictions of model iteration 2 and initial findings of outcome
6 (Fig. 5F, G). Meropenem killed the anaerobic community
(primarily Streptococci) and the increase in TBL was driven by a

bloom of Pseudomonas (P2 community) and Staphylococcus (P1
community) to a higher level than the communities’ inherent
carrying capacity (Fig. 5F, G). This experiment was subsequently
repeated (n= 5), with the same results observed (Fig. S10). It was
interesting that a similar increase in TBL occurred from a
community without a dominant pathogen (P1, Fig. 5G). We
hypothesize that this result is due to the importance of both
oxygen and pH in the governing dynamics. With very low levels of
the pathogen guild, the community struggles to grow due to high
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oxygen penetration. When the anaerobes are inhibited by
antibiotics, even low levels of an initial pathogen can begin to
bloom, as they are not inhibited by oxygen or the antibiotic, and
this leads to an increase in total carrying capacity.

Antibiotic effects at the strain level in pwCF
To explore similar phenomena in outcomes 5 and 6 from pwCF
treated with antibiotics we sequenced the metagenomes of
sputum samples collected from subjects immediately prior to and
during antibiotic treatment (n= 6) (Table S19). To minimize the
effects of multiple therapies at once, a common occurrence in CF
therapeutics, these samples were selected based on the treatment
provided being the only known antibiotic prescribed to the
subject at the time. Metagenomes were analyzed at the strain
level and TBL was examined using qPCR. Overall, there was no
significant decrease in TBL (Fig. 6A, Wilcoxon rank-sum test, p=
0.095), but alpha diversity significantly decreased (Fig. 6B,
Wilcoxon rank-sum test, p= 0.045). Analysis of the rank abun-
dance changes of the microbiome at the strain level showed that
all six subjects had dynamic changes in their sputum microbiomes
associated with antibiotic treatment despite little decrease in TBL
(Fig. 6C). Thus, like outcome 5, and indicative of outcome 6,
dynamic community changes occur in pwCF with minor changes
in TBL.

DISCUSSION
Outcomes of antibiotic therapy against pulmonary infections in
cystic fibrosis and other chronic lung diseases have poor
predictability. Recovery to baseline from a pulmonary exacer-
bation after therapy occurs in 75% of patients treated, thus, one
quarter of these subjects do not return to their previous baseline
lung function [47]. The choice of antibiotic treatment is generally
predicated on antibiotic resistance profiles determined from
isolates of lung pathogens, but is poorly informative of
subsequent clinical outcomes [48]. This is not surprising, as this
approach is naïve to the fact that lung infections represent a
polymicrobial ecosystem with interdependencies and competi-
tion among its members [31, 49]. Here, we aimed to first predict
with modelling, and then explore in detail with experimentation,
the outcomes of antibiotic therapy against a cultured CF lung
microbiome. Four of our six outcomes were predicted theore-
tically and by modelling, but two were not, leading to further
exploration of their origins. Our experiments indicate that the CF
lung microbiome may have an inherent resistance to antimicro-
bial therapy, as many antibiotics had little overall effect on the
communities, but meropenem and amoxicillin had dynamic
impacts, particularly through killing of anaerobic fermenters.
In some instances, regardless of antibiotic chosen, the commu-
nity reached a higher carrying capacity when the drug was
present than when antibiotic free. This finding exemplifies the
inherent ecology within this microbial system that we define as
community level inhibition. The mathematical model iteration 2
was able to provide clues as to why this occured, demonstrating
the utility of the modeling approach. Fermentation by anaerobic
bacteria in the community produces acid that is known to inhibit
pathogens, particularly P. aeruginosa [20]. Killing of these
fermenters raises culture pH allowing a bloom of the pathogen
to reach a higher carrying capacity than the community without
an antibiotic.
We previously showed that pH shapes the niche space of the CF

microbiome [20] and have now shown that low pH also limits the
total carrying capacity of the system. Our experiments also show
that the presence of an aerobic pathogen enables the community
to reach a higher overall load, likely due to oxygen draw down
from aerobic metabolism creating the anaerobic niche needed for
fermenters. There is evidence that similar dynamics may occur in
pwCF during treatment for pulmonary exacerbations [4, 21]. Thus,

further study on the temporal assembly of the CF lung
mcirobiome is needed, which can also be supported by modeling.
These complex ecological consequences of disturbance may help
explain why treatment outcomes have been so difficult to predict
for CF. All microbiomes in humans and animals contain complex
species-species and guild-guild interdependencies and competi-
tive interactions. It is paramount that we understand these
interactions to enable better therapeutic outcomes of antibiotic
therapy against any microbiome, pathogenic or commensal.

DATA AVAILABILITY
The 16S rRNA gene amplicon microbiome data was deposited in the Qiita [25]
database as the project numbers 12992 and 14086. The metagenomic data was
deposited to the NCBI database under the SubmissionID: SUB11489970 and
BioProjectID: PRJNA839435. The code for simulating the mathematical model is
available at https://github.com/zhangtianyu-msu/WinCF_Antibiotic_Code.
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